42 research outputs found

    An Analysis of the Environment and Gas Content of Luminous Infrared Galaxies

    Get PDF
    Luminous and ultraluminous infrared galaxies (U/LIRGs) represent a population among the most extreme in our universe, emitting an extraordinary amount of energy at infrared wavelengths from dust heated by prolific star formation and/or an active galactic nucleus (AGN). We present three investigations of U/LIRGs to better understand their global environment, their interstellar medium properties, and their nuclear region where molecular gas feeds a starburst or AGN. To study the global environment, we compute the spatial cluster-galaxy amplitude, Bgc, for 76 z 1 Jy), and at moderately high elevation (> 45°). We map Arp 193 in 12CO(2-1) with CARMA, achieving 0.18'' x 0.12'' (~65 pc) resolution, and demonstrating an improvement with C-PACS. We compute a molecular gas mass of 2 x 109 Msun and find ~20% of the total mass is in the form of molecular gas out to a radius of 750 pc. In the inner 150 pc of the nucleus, N(H2) > 1025 cm-2

    Detection of Radio Emission from the Hyperactive L Dwarf 2MASS J13153094-2649513AB

    Full text link
    We report the detection of radio emission from the unusually active L5e + T7 binary 2MASS J13153094-2649513AB made with the Australian Telescope Compact Array. Observations at 5.5 GHz reveal an unresolved source with a continuum flux of 370+/-50 microJy, corresponding to a radio luminosity of L_rad = nuL_nu = (9+/-3)x10^23 erg/s and log10(L_rad/L_bol) = -5.44+/-0.22. No detection is made at 9.0 GHz to a 5 sigma limit of 290 microJy, consistent with a power law spectrum S_nu ~ nu^-a with a > 0.5. The emission is quiescent, with no evidence of variability or bursts over 3 hr of observation, and no measurable polarization (V/I < 34%). 2MASS J1315-2649AB is one of the most radio-luminous ultracool dwarfs detected in quiescent emission to date, comparable in strength to other cool sources detected in outburst. Its detection indicates no decline in radio flux through the mid-L dwarfs. It is unique among L dwarfs in having strong and persistent Halpha and radio emission, indicating the coexistence of a cool, neutral photosphere (low electron density) and a highly active chromosphere (high electron density and active heating). These traits, coupled with the system's mature age and substellar secondary, makes 2MASS J1315-2649AB an important test for proposed radio emission mechanisms in ultracool dwarfs.Comment: 5 pages, 4 figures, accepted for publication in ApJ Letter

    The Intermediate Mass Black Hole Candidate in the Center of NGC 404: New Evidence from Radio Continuum Observations

    Full text link
    We present the results of deep, high-resolution, 5 GHz Expanded Very Large Array (EVLA) observations of the nearby, dwarf lenticular galaxy and intermediate mass black hole candidate (M ~4.5 x 10^5 M_sun), NGC 404. For the first time, radio emission at frequencies above 1.4 GHz has been detected in this galaxy. We found a modestly resolved source in the NGC 404 nucleus with a total radio luminosity of 7.6 +/- 0.7 x 10^17 W/Hz at 5 GHz and a spectral index from 5 to 7.45 GHz of alpha = -0.88 +/- 0.30. NGC 404 is only the third central intermediate mass black hole candidate detected in the radio regime with subarcsecond resolution. The position of the radio source is consistent with the optical center of the galaxy and the location of a known, hard X-ray point source (Lx ~1.2 x 10^37 erg/s). The faint radio and X-ray emission could conceivably be produced by an X-ray binary, star formation, a supernova remnant or a low-luminosity AGN powered by an intermediate mass black hole. In light of our new EVLA observations, we find that the most likely scenario is an accreting intermediate mass black hole, with other explanations incompatible with the observed X-ray and/or radio luminosities or statistically unlikely.Comment: Accepted for publication to Ap

    A VLA Study of High-redshift GRBs I - Multi-wavelength Observations and Modeling of GRB 140311A

    Full text link
    We present the first results from a recently concluded study of GRBs at z≳5z\gtrsim5 with the Karl G. Jansky Very Large Array (VLA). Spanning 11 to 85.585.5 GHz and 7 epochs from 1.5 to 82.3 d, our observations of GRB 140311A are the most detailed joint radio and millimeter observations of a GRB afterglow at z≳5z\gtrsim5 to date. In conjunction with optical/near-IR and X-ray data, the observations can be understood in the framework of radiation from a single blast wave shock with energy EK,iso≈8.5×1053E_{\rm K,iso}\approx8.5\times10^{53} erg expanding into a constant density environment with density, n0≈8 cm−3n_0\approx8\,{\rm cm}^{-3}. The X-ray and radio observations require a jet break at tjet≈0.6t_{\rm jet}\approx0.6 d, yielding an opening angle of θjet≈4∘\theta_{\rm jet}\approx4^{\circ} and a beaming-corrected blast wave kinetic energy of EK≈2.2×1050E_{\rm K}\approx2.2\times10^{50} erg. The results from our radio follow-up and multi-wavelength modeling lend credence to the hypothesis that detected high-redshift GRBs may be more tightly beamed than events at lower redshift. We do not find compelling evidence for reverse shock emission, which may be related to fast cooling driven by the moderately high circumburst density.Comment: 16 pages, 13 figures, submitted to Ap

    Radio Properties of Tidal Disruption Events

    Full text link
    Radio observations of tidal disruption events (TDEs) probe material ejected by the disruption of stars by supermassive black holes (SMBHs), uniquely tracing the formation and evolution of jets and outflows, revealing details of the disruption hydrodynamics, and illuminating the environments around previously-dormant SMBHs. To date, observations reveal a surprisingly diverse population. A small fraction of TDEs (at most a few percent) have been observed to produce radio-luminous mildly relativistic jets. The remainder of the population are radio quiet, producing less luminous jets, non-relativistic outflows or, possibly, no radio emission at all. Here, we review the radio observations that have been made of TDEs to date and discuss possible explanations for their properties, focusing on detected sources and, in particular, on the two best-studied events: Sw J1644+57 and ASASSN-14li. We also discuss what we have learned about the host galaxies of TDEs from radio observations and review constraints on the rates of bright and faint radio outflows in TDEs. Upcoming X-ray, optical, near-IR, and radio surveys will greatly expand the sample of TDEs, and technological advances open the exciting possibility of discovering a sample of TDEs in the radio band unbiased by host galaxy extinction.Comment: Resubmitted for publication in Springer Space Science Reviews following referee comments. Chapter in ISSI review "The Tidal Disruption of Stars by Massive Black Holes" vol. 79. Table 2 is available in machine-readable format upon reques

    Short GRB 130603B: Discovery of a jet break in the optical and radio afterglows, and a mysterious late-time X-ray excess

    Full text link
    We present radio, optical/NIR, and X-ray observations of the afterglow of the short-duration 130603B, and uncover a break in the radio and optical bands at 0.5 d after the burst, best explained as a jet break with an inferred jet opening angle of 4-8 deg. GRB 130603B is only the third short GRB with a radio afterglow detection to date, and the first time that a jet break is evident in the radio band. We model the temporal evolution of the spectral energy distribution to determine the burst explosion properties and find an isotropic-equivalent kinetic energy of (0.6-1.7) x 10^51 erg and a circumburst density of 5 x 10^-3-30 cm^-3. From the inferred opening angle of GRB 130603B, we calculate beaming-corrected energies of Egamma (0.5-2) x 10^49 erg and EK (0.1-1.6) x 10^49 erg. Along with previous measurements and lower limits we find a median short GRB opening angle of 10 deg. Using the all-sky observed rate of 10 Gpc^-3 yr^-1, this implies a true short GRB rate of 20 yr^-1 within 200 Mpc, the Advanced LIGO/VIRGO sensitivity range for neutron star binary mergers. Finally, we uncover evidence for significant excess emission in the X-ray afterglow of GRB 130603B at >1 d and conclude that the additional energy component could be due to fall-back accretion or spin-down energy from a magnetar formed following the merger.Comment: Submitted to ApJ; emulateapj style; 10 pages, 1 table, 3 figure

    A Resolved Ring of Debris Dust around the Solar Analog HD 107146

    Get PDF
    We present resolved images of the dust continuum emission from the debris disk around the young (80-200 Myr) solar-type star HD 107146 with CARMA at λ = 1.3 mm and the CSO at λ = 350 μ. Both images show that the dust emission extends over an approximately 10" diameter region. The high-resolution (3") CARMA image further reveals that the dust is distributed in a partial ring with significant decrease in a flux inward of 97 AU. Two prominent emission peaks appear within the ring separated by ~140° in the position angle. The morphology of the dust emission is suggestive of dust captured into a mean motion resonance, which would imply the presence of a planet at an orbital radius of ~45-75 AU
    corecore